Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We report the discovery of a close-in (Porb= 3.349 days) warm Neptune with clear transit timing variations (TTVs) orbiting the nearby (d= 47.3 pc) active M4 star, TOI-2015. We characterize the planet's properties using Transiting Exoplanet Survey Satellite (TESS) photometry, precise near-infrared radial velocities (RVs) with the Habitable-zone Planet Finder Spectrograph, ground-based photometry, and high-contrast imaging. A joint photometry and RV fit yields a radius , mass , and density for TOI-2015 b, suggesting a likely volatile-rich planet. The young, active host star has a rotation period ofProt= 8.7 ± 0.9 days and associated rotation-based age estimate of 1.1 ± 0.1 Gyr. Though no other transiting planets are seen in the TESS data, the system shows clear TTVs of super-period and amplitude ∼100 minutes. After considering multiple likely period-ratio models, we show an outer planet candidate near a 2:1 resonance can explain the observed TTVs while offering a dynamically stable solution. However, other possible two-planet solutions—including 3:2 and 4:3 resonances—cannot be conclusively excluded without further observations. Assuming a 2:1 resonance in the joint TTV-RV modeling suggests a mass of for TOI-2015 b and for the outer candidate. Additional transit and RV observations will be beneficial to explicitly identify the resonance and further characterize the properties of the system.more » « less
-
Abstract Kepler-51 is a ≲1 Gyr old Sun-like star hosting three transiting planets with radii ≈6–9R⊕and orbital periods ≈45–130 days. Transit timing variations (TTVs) measured with past Kepler and Hubble Space Telescope (HST) observations have been successfully modeled by considering gravitational interactions between the three transiting planets, yielding low masses and low mean densities (≲0.1 g cm−3) for all three planets. However, the transit time of the outermost transiting planet Kepler-51d recently measured by the James Webb Space Telescope 10 yr after the Kepler observations is significantly discrepant from the prediction made by the three-planet TTV model, which we confirmed with ground-based and follow-up HST observations. We show that the departure from the three-planet model is explained by including a fourth outer planet, Kepler-51e, in the TTV model. A wide range of masses (≲MJup) and orbital periods (≲10 yr) are possible for Kepler-51e. Nevertheless, all the coplanar solutions found from our brute-force search imply masses ≲10M⊕for the inner transiting planets. Thus, their densities remain low, though with larger uncertainties than previously estimated. Unlike other possible solutions, the one in which Kepler-51e is around the 2:1 mean motion resonance with Kepler-51d implies low orbital eccentricities (≲0.05) and comparable masses (∼5M⊕) for all four planets, as is seen in other compact multiplanet systems. This work demonstrates the importance of long-term follow-up of TTV systems for probing longer-period planets in a system.more » « less
An official website of the United States government
